Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 236
1.
PLoS One ; 19(5): e0298299, 2024.
Article En | MEDLINE | ID: mdl-38722945

Sunflower is one of the four major oil crops in the world. 'Zaoaidatou' (ZADT), the main variety of oil sunflower in the northwest of China, has a short growth cycle, high yield, and high resistance to abiotic stress. However, the ability to tolerate adervesity is limited. Therefore, in this study, we used the retention line of backbone parent ZADT as material to establish its tissue culture and genetic transformation system for new variety cultivating to enhance resistance and yields by molecular breeding. The combination of 0.05 mg/L IAA and 2 mg/L KT in MS was more suitable for direct induction of adventitious buds with cotyledon nodes and the addition of 0.9 mg/L IBA to MS was for adventitious rooting. On this basis, an efficient Agrobacterium tumefaciens-mediated genetic transformation system for ZADT was developed by the screening of kanamycin and optimization of transformation conditions. The rate of positive seedlings reached 8.0%, as determined by polymerase chain reaction (PCR), under the condition of 45 mg/L kanamycin, bacterial density of OD600 0.8, infection time of 30 min, and co-cultivation of three days. These efficient regeneration and genetic transformation platforms are very useful for accelerating the molecular breeding process on sunflower.


Agrobacterium tumefaciens , Helianthus , Plants, Genetically Modified , Transformation, Genetic , Helianthus/genetics , Helianthus/microbiology , Helianthus/growth & development , Agrobacterium tumefaciens/genetics , Plants, Genetically Modified/genetics , Tissue Culture Techniques/methods , Plant Roots/microbiology , Plant Roots/genetics , Plant Roots/growth & development , Plant Breeding/methods , Crops, Agricultural/genetics , Crops, Agricultural/growth & development
2.
ACS Nano ; 2024 May 10.
Article En | MEDLINE | ID: mdl-38727027

The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.

3.
Arch Esp Urol ; 77(3): 242-248, 2024 Apr.
Article En | MEDLINE | ID: mdl-38715164

OBJECTIVE: To retrospectively analyse the effects of cinobufotalin capsule combined with zoledronic acid on pain symptoms and clinical efficacy of prostate cancer patients with bone metastases. METHODS: Patients with prostate cancer with bone metastasis admitted to our hospital from January 2021 to December 2022 were selected as study subjects. They were divided into the control group (treated with zoledronic acid) and the combined group (cinobufotalin capsules were added on the control group basis) according to different recorded treatment methods. The efficacies of the two groups after matching, lumbar L1-4 bone mineral density (BMD), serum calcium, serum phosphorus, visual analogue scale (VAS) score and Karnofsky performance status (KPS) score before and after treatment were compared, and adverse reactions were statistically analysed. RESULTS: A total of 102 patients were included in the study, encompassing 52 patients in the combined group and 50 patients in the control group. After 1:1 preference score matching, 64 patients were included in the two groups. No significant difference in baseline data was found between the two groups (p > 0.05). The total effective rate of the combination group was higher than that of the control group (p < 0.05). No significant differences in L1-4 bone mineral density, serum calcium and phosphorus, VAS score and KPS score were observed between the two groups prior to treatment (p > 0.05). After treatment, the L1-4 bone mineral density (BMD) and KPS score of the combined group decreased to less than those of the control group, the VAS score was lower than that of the control group, and the serum calcium and phosphorus level increased but less than that of the control group (p < 0.05). No significant difference in adverse reactions was found between the two groups (p > 0.05). CONCLUSIONS: Cinobufotalin capsule combined with zoledronic acid had ideal efficacy in the treatment of prostate cancer in patients with bone metastasis. This approach could improve their bone density and quality of life, improve their calcium and phosphorus metabolism, reduce their pain symptoms and provide increased safety. It may have an important guiding role in formulating future clinical treatment plans for patients with prostate cancer and bone metastasis.


Bone Density Conservation Agents , Bone Neoplasms , Bufanolides , Prostatic Neoplasms , Zoledronic Acid , Humans , Male , Zoledronic Acid/therapeutic use , Zoledronic Acid/administration & dosage , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/complications , Retrospective Studies , Aged , Bone Density Conservation Agents/therapeutic use , Bone Density Conservation Agents/administration & dosage , Bone Neoplasms/secondary , Bone Neoplasms/drug therapy , Bone Neoplasms/complications , Bufanolides/therapeutic use , Bufanolides/administration & dosage , Middle Aged , Treatment Outcome , Capsules , Drug Therapy, Combination , Cancer Pain/drug therapy
4.
Angew Chem Int Ed Engl ; : e202402139, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38563765

The development of artificial receptors that combine ultrahigh-affinity binding and controllable release for active guests holds significant importance in biomedical applications. On one hand, a complex with an exceedingly high binding affinity can resist unwanted dissociation induced by dilution effect and complex interferents within physiological environments. On the other hand, stimulus-responsive release of the guest is essential for precisely activating its function. In this context, we expanded hydrophobic cavity surface of a hypoxia-responsive azocalix[4]arene, affording Naph-SAC4A. This modification significantly enhanced its aqueous binding affinity to 1013 M-1, akin to the naturally occurring strongest recognition pair, biotin/(strept-)avidin. Consequently, Naph-SAC4A emerges as the first artificial receptor to simultaneously integrate ultrahigh recognition affinity and actively controllable release. The markedly enhanced affinity not only improved Naph-SAC4A's sensitivity in detecting rocuronium bromide in serum, but also refined the precision of hypoxia-responsive doxorubicin delivery at the cellular level, demonstrating its immense potential for diverse practical applications.

6.
Environ Res ; 252(Pt 1): 118865, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38583661

Benzo(a)pyrene [B(a)P] is an environmental endocrine disruptor with reproductive toxicity. The corpus luteum (CL) of the ovary plays an important role in embryo implantation and pregnancy maintenance. Our previous studies have shown that B(a)P exposure affects embryo implantation and endometrial decidualization in mouse, but its effects and mechanisms on CL function remain unclear. In this study, we explore the mechanism of ovarian toxicity of B(a)P using a pregnant mouse model and an in vitro model of human ovarian granulosa cells (GCs) KGN. Pregnant mice were gavaged with corn oil or 0.2 mg/kg.bw B(a)P from pregnant day 1 (D1) to D7, while KGN cells were treated with DMSO, 1.0IU/mL hCG, or 1.0IU/mL hCG plus benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), a B(a)P metabolite. Our findings revealed that B(a)P exposure damaged embryo implantation and reduced estrogen and progesterone levels in early pregnant mice. Additionally, in vitro, BPDE impaired luteinization in KGN cells. We observed that B(a)P/BPDE promoted oxidative stress (OS) and inflammation, leading to apoptosis rather than pyroptosis in ovaries and luteinized KGN cells. This apoptotic response was mediated by the activation of inflammatory Caspase1 through the cleavage of BID. Furthermore, B(a)P/BPDE inhibited TRAF2 expression and suppressed NFκB signaling pathway activation. The administration of VX-765 to inhibit the Caspase1 activation, over-expression of TRAF2 using TRAF2-pcDNA3.1 (+) plasmid, and BetA-induced activation of NFκB signaling pathway successfully alleviated BPDE-induced apoptosis and cellular dysfunction in luteinized KGN cells. These findings were further confirmed in the KGN cell treated with H2O2 and NAC. In conclusion, this study elucidated that B(a)P/BPDE induces apoptosis rather than pyroptosis in GCs via TRAF2-NFκB-Caspase1 during early pregnancy, and highlighting OS as the primary contributor to B(a)P/BPDE-induced ovarian toxicity. Our results unveil a novel role of TRAF2-NFκB-Caspase1 in B(a)P-induced apoptosis and broaden the understanding of mechanisms underlying unexplained luteal phase deficiency.

7.
Angew Chem Int Ed Engl ; : e202406233, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38591161

The precise recognition and sensing of steroids, a type of vital biomolecules, hold immense practical value across various domains. In this study, we introduced corral[4]BINOLs (C[4]BINOLs), a pair of enantiomeric conjugated deep-cavity hosts, as novel synthetic receptors for binding steroids. Due to the strong hydrophobic effect of their deep nonpolar, chiral cavities, the two enantiomers of C[4]BINOLs demonstrated exceptionally high recognition affinities (up to 1012 M-1) for 16 important steroidal compounds as well as good enantioselectiviy (up to 15.5) in aqueous solutions, establishing them as the most potent known steroid receptors. Harnessing their ultrahigh affinity, remarkable enantioselectivity, and fluorescence emission properties, the two C[4]BINOL enantiomers were employed to compose a fluorescent sensor array which achieved discrimination and sensing of 16 structurally similar steroids at low concentrations.

8.
Eur J Med Chem ; 269: 116325, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38527378

By virtue of the drug repurposing strategy, the anti-osteoporosis drug raloxifene was identified as a novel PPARγ ligand through structure-based virtual high throughput screening (SB-VHTS) of FDA-approved drugs and TR-FRET competitive binding assay. Subsequent structural refinement of raloxifene led to the synthesis of a benzothiophene derivative, YGL-12. This compound exhibited potent PPARγ modulation with partial agonism, uniquely promoting adiponectin expression and inhibiting PPARγ Ser273 phosphorylation by CDK5 without inducing the expression of adipongenesis associated genes, including PPARγ, aP2, CD36, FASN and C/EBPα. This specific activity profile resulted in effective hypoglycemic properties, avoiding major TZD-related adverse effects like weight gain and hepatomegaly, which were demonstrated in db/db mice. Molecular docking studies showed that YGL-12 established additional hydrogen bonds with Ile281 and enhanced hydrogen-bond interaction with Ser289 as well as PPARγ Ser273 phosphorylation-related residues Ser342 and Glu343. These findings suggested YGL-12 as a promising T2DM therapeutic candidate, thereby providing a molecular framework for the development of novel PPARγ modulators with an enhanced therapeutic index.


PPAR gamma , Raloxifene Hydrochloride , Thiophenes , Mice , Animals , PPAR gamma/metabolism , Molecular Docking Simulation , Drug Repositioning
9.
J Control Release ; 368: 691-702, 2024 Apr.
Article En | MEDLINE | ID: mdl-38492860

Host-guest drug delivery systems (HGDDSs) provided a facile method for incorporating biomedical functions, including efficient drug-loading, passive targeting, and controlled drug release. However, developing HGDDSs with active targeting is hindered by the difficult functionalization of popular macrocycles. Herein, we report an active targeting HGDDS based on biotin-modified sulfonated azocalix[4]arene (Biotin-SAC4A) to efficiently deliver drug into cancer cells for improving anti-tumor effect. Biotin-SAC4A was synthesized by amide condensation and azo coupling. Biotin-SAC4A demonstrated hypoxia responsive targeting and active targeting through azo and biotin groups, respectively. DOX@Biotin-SAC4A, which was prepared by loading doxorubicin (DOX) in Biotin-SAC4A, was evaluated for tumor targeting and therapy in vitro and in vivo. DOX@Biotin-SAC4A formulation effectively killed cancer cells in vitro and more efficiently delivered DOX to the lesion than the similar formulation without active targeting. Therefore, DOX@Biotin-SAC4A significantly improved the in vivo anti-tumor effect of free DOX. The facilely prepared Biotin-SAC4A offers strong DOX complexation, active targeting, and hypoxia-triggered release, providing a favorable host for effective breast cancer chemotherapy in HGDDSs. Moreover, Biotin-SAC4A also has potential to deliver agents for other therapeutic modalities and diseases.


Antineoplastic Agents , Breast Neoplasms , Humans , Female , Biotin , Drug Delivery Systems/methods , Doxorubicin , Breast Neoplasms/drug therapy , Hypoxia/drug therapy , Cell Line, Tumor , Drug Liberation
10.
Immunology ; 172(2): 235-251, 2024 Jun.
Article En | MEDLINE | ID: mdl-38425094

Myocarditis has emerged as a rare but lethal immune checkpoint inhibitor (ICI)-associated toxicity. However, the exact mechanism and the specific therapeutic targets remain underexplored. In this study, we aim to characterise the transcriptomic profiles based on single-cell RNA sequencing from ICI-related myocarditis. Peripheral blood mononuclear cell (PBMC) samples were collected from four groups for single-cell RNA sequencing: (1) patients with newly diagnosed lung squamous cell carcinoma before treatment (Control Group); (2) patients with lung squamous cell carcinoma with PD-1 inhibitor therapy who did not develop myocarditis (PD-1 Group); (3) patients during fulminant ICI-related myocarditis onset (Myocarditis Group); and (4) Patients with fulminant ICI-related myocarditis during disease remission (Recovery Group). Subcluster determination, functional analysis, single-cell trajectory and cell-cell interaction analysis were performed after scRNA-seq. Bulk-RNA sequencing was performed for further validation. Our results revealed the diversity of cellular populations in ICI-related myocarditis, marked by their distinct transcriptional profiles and biological functions. Monocytes, NKs as well as B cells contribute to the regulation of innate immunity and inflammation in ICI-related myocarditis. With integrated analysis of scRNA-seq and bulk sequencing, we identified S100A protein family as a potential serum marker for ICI-related myocarditis. Our study has created a cell atlas of PBMC during ICI-related myocarditis, which would shed light on the pathophysiological mechanism and potential therapeutic targets of ICI-related myocarditis in continuous exploration.


Immune Checkpoint Inhibitors , Immunity, Innate , Lung Neoplasms , Myocarditis , Single-Cell Analysis , Humans , Myocarditis/immunology , Myocarditis/chemically induced , Myocarditis/genetics , Immune Checkpoint Inhibitors/adverse effects , Immune Checkpoint Inhibitors/therapeutic use , Male , Female , Middle Aged , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Transcriptome , Sequence Analysis, RNA , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Aged , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Gene Expression Profiling
11.
J Phys Chem Lett ; 15(6): 1719-1725, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38320267

Quantum trap, a quantum and thermal fluctuations-induced nonmonotonous potential, offers a chance to build up microscopic mechanical systems completely dominated by fluctuations. Here, we explore the physical limit of the effective damping ratio of the nonlinear Brownian oscillator in a quantum trap, set by the finite separation for avoiding molecular-scale effects on the trap potential and the surface confinement effect-induced diverging damping and random forces. The quasiharmonic approximations and Langevin dynamics simulations show that the lowest effective damping ratios of the suspended Au plate and Au sphere upon a Teflon coating of 10 nm can be ∼210 and ∼145, respectively, at room temperature. Perforation is proposed as an effective route to reduce the damping ratio (down to 6.4) by attenuating the surface confinement effect. An unexpected result due to the temperature dependences of dielectric function and viscosity of ethanol is a further reduced damping ratio at 400 K (1.3). The nonlinear Brownian oscillator in the quantum trap shows promise of probing near-boundary hydrodynamics at nanoscale.

12.
ArXiv ; 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38410646

Recent studies indicate that Generative Pre-trained Transformer 4 with Vision (GPT-4V) outperforms human physicians in medical challenge tasks. However, these evaluations primarily focused on the accuracy of multi-choice questions alone. Our study extends the current scope by conducting a comprehensive analysis of GPT-4V's rationales of image comprehension, recall of medical knowledge, and step-by-step multimodal reasoning when solving New England Journal of Medicine (NEJM) Image Challenges - an imaging quiz designed to test the knowledge and diagnostic capabilities of medical professionals. Evaluation results confirmed that GPT-4V performs comparatively to human physicians regarding multi-choice accuracy (81.6% vs. 77.8%). GPT-4V also performs well in cases where physicians incorrectly answer, with over 78% accuracy. However, we discovered that GPT-4V frequently presents flawed rationales in cases where it makes the correct final choices (35.5%), most prominent in image comprehension (27.2%). Regardless of GPT-4V's high accuracy in multi-choice questions, our findings emphasize the necessity for further in-depth evaluations of its rationales before integrating such multimodal AI models into clinical workflows.

13.
Huan Jing Ke Xue ; 45(1): 606-616, 2024 Jan 08.
Article Zh | MEDLINE | ID: mdl-38216509

Acid modification has been widely used to modify the structural properties of biochars. However, acid modification led to the large consumption of acid, increased difficulty of waste effluent disposal, and a high application cost. To evaluate the advantages and application potential of biochars prepared under CO2, utilizing pyrolysis to directly modify biochars to improve heavy metal removal efficiency and reduce production cost, would be an important prerequisite for the broad application of biochars. The sorption performance of Pb2+ with CO2-modified biochars was compared with that of HNO3-modified biochar. The elemental compositions and structural properties of biochars were characterized through elemental analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The results revealed that for biochars produced at 500℃, HNO3 modification produced abundant carboxylic groups and -NO2 (asy) and -NO2 (sym) groups, promoting the surface activities and complexing abilities of biochars. The CO2-modified biochars contained abundant carbonate minerals, which could remove Pb2+ by electrostatic ion exchange and coprecipitation or complex. In addition, compared to that of HNO3-modified biochars, CO2-modified biochars had the larger specific surface area and better microporous structures, which were beneficial to the diffusion of Pb2+ and further promoted surface sorption. CO2 modification increased the maximum Pb2+ sorption capacity of W500CO2 and W700CO2, which were 60.14 mg·g-1 and 71.69 mg·g-1. By contrast, HNO3-modified biochars W500N2-A and W700N2-A showed the lower Pb2+ sorption capacities, which were 42.26 mg·g-1 and 68.3 mg·g-1, respectively. The increasing of the specific surface area and functional groups simultaneously promoted the sorption capacity of CO2-modified biochars. Consequently, the CO2-modified biochar had the advantages of low cost, environmental friendliness, and high heavy metal removal efficiency, which is a modification method worthy of promotion and application.

15.
Angew Chem Int Ed Engl ; 63(5): e202317402, 2024 Jan 25.
Article En | MEDLINE | ID: mdl-38078790

The pursuit of synthetic receptors with high binding affinities has long been a central focus in supramolecular chemistry, driven by their significant practical relevance in various fields. Despite the numerous synthetic receptors that have been developed, most exhibit binding affinities in the micromolar range or lower. Only a few exceptional receptors achieve binding affinities exceeding 109  M-1 , and their substrate scopes remain rather limited. In this context, we introduce SC[5]A, a conjugated corral-shaped macrocycle functionalized with ten sulfate groups. Owing to its deep one-dimensional confined hydrophobic cavity and multiple sulfate groups, SC[5]A displays an extraordinarily high binding strength of up to 1011  M-1 towards several size-matched, rod-shaped organic dications in water. Besides, its conformation exhibits good adaptability, allowing it to encapsulate a wide range of other guests with diverse molecular sizes, shapes, and functionalities, exhibiting relatively strong affinities (Ka =106 -108  M-1 ). Additionally, we've explored the preliminary application of SC[5]A in alleviating blood coagulation induced by hexadimethrine bromide in vitro and in vivo. Therefore, the combination of ultrahigh binding affinities (towards complementary guests) and adaptive recognition capability (towards a wide range of functional guests) of SC[5]A positions it as exceptionally valuable for numerous practical applications.

16.
Plant Biotechnol J ; 22(2): 379-385, 2024 Feb.
Article En | MEDLINE | ID: mdl-37822083

The CRISPR/Cas type V-I is a family of programmable nuclease systems that prefers a T-rich protospacer adjacent motif (PAM) and is guided by a short crRNA. In this study, the genome-editing application of Cas12i3, a type V-I family endonuclease, was characterized in rice. We developed a CRIPSR/Cas12i3-based Multiplex direct repeats (DR)-spacer Array Genome Editing (iMAGE) system that was efficient in editing various genes in rice. Interestingly, iMAGE produced chromosomal structural variations with a higher frequency than CRISPR/Cas9. In addition, we developed base editors using deactivated Cas12i3 and generated herbicide-resistant rice plants using the base editors. These CRIPSR/Cas12i3-based genome editing systems will facilitate precision molecular breeding in plants.


Gene Editing , Oryza , Gene Editing/methods , CRISPR-Cas Systems/genetics , Oryza/genetics , Plants/genetics , Endonucleases/genetics
17.
J Sci Food Agric ; 104(5): 2832-2841, 2024 Mar 30.
Article En | MEDLINE | ID: mdl-38018634

BACKGROUND: Folic acid and vitamin B12 (FV), being B vitamins, not only facilitate the remethylation of homocysteine (Hcy) but also contribute to embryonic development. This study aimed to assess the impact of FV supplementation during late pregnancy on sows' reproductive performance, amino acid metabolism, placental angiogenesis, and related parameters. Twenty primiparous sows at day 60 of gestation were randomly allocated to two groups: a basal diet (CON) group and a group receiving a basal diet supplemented with folic acid at 20 ppm and vitamin B12 at 125 ppb. RESULTS: The findings revealed that dietary FV supplementation significantly reduced the incidence of intrauterine growth retardation compared to the CON group (P < 0.05). Furthermore, it led to a decrease in the Hcy levels in umbilical cord serum (P < 0.05) and activation of the placental mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway (P < 0.05). Additionally, FV supplementation lowered placental malondialdehyde levels (P < 0.05) and increased the expression of placental thioredoxin (P = 0.05). Moreover, maternal FV supplementation notably elevated placental vascular density (P < 0.05) and the expression of sodium-coupled neutral amino acid transporter 2 (SNAT2) (P < 0.05), as well as amino acid concentrations in umbilical cord blood (P < 0.05). CONCLUSION: Maternal FV supplementation during medium to late gestation reduced Hcy levels in umbilical cord blood and positively impacted fetal development. This improvement was closely associated with increased placental antioxidant capacity and vascular density, as well as activation of the placental mTORC1-SNAT2 signaling pathway. © 2023 Society of Chemical Industry.


Folic Acid , Vitamin B Complex , Pregnancy , Female , Animals , Swine , Folic Acid/metabolism , Antioxidants/metabolism , Vitamin B 12 , Placenta/metabolism , Angiogenesis , Dietary Supplements , Amino Acids/metabolism , Fetal Development , Mechanistic Target of Rapamycin Complex 1/metabolism
18.
Gene ; 896: 148034, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38013129

BACKGROUND: By extracting and sequencing miRNAs from serum exosomes of patients with early-onset ocular myasthenia gravis (OMG), generalized myasthenia gravis (GMG) and healthy controls, we screened differentially expressed miRNAs and explored the possibility as potential biomarkers for early-onset OMG. METHODS: Peripheral blood samples were collected from patients with early-onset OMG, early-onset GMG, and age-matched healthy subjects, with 6 samples in each group. All these patients were diagnosed as MG for the first time and did not undergo any treatment. Exosomes miRNAs were extracted from the serum and performed deep sequencing; the differentially expressed miRNAs were compared and analyzed between OMG, GMG, and healthy control groups using edgeR. The differential expression standard was set to | log2FC |>1, p < 0.05. Target prediction of mRNAs were performed using miRTarBase, TargetScan, and miRDB databases, and a protein-protein interaction (PPI) network was constructed subsequently. The miRNAs with a significant difference were validated using RT-qPCR (10 early-onset OMG patients, 10 early-onset GMG patients and 10 age-sex-matched healthy subjects), and the value of the area under the ROC curve (AUC) was used to assess the diagnostic accuracy and evaluate clinical prognostic value. RESULTS: In total, one upregulated (miR-130a-3p) miRNA was obtained through the upregulated intersection between control vs OMG and OMG vs GMG; four downregulated (miR-4712-3p; miR-6752-5p; miR-320d; miR-3614-3p) miRNAs were obtained through the downregulated intersection between control vs OMG and OMG vs GMG. A total of 408 target genes were predicted for the five differentially expressed miRNAs. The mTOR signaling pathway and Rap1 signaling pathway were significantly enriched based on the enrichment results. RT-qPCR findings revealed that for the OMG, the expression of miR-320d, miR-4712-3p and miR-3614-3p was markedly up-/down-regulated as compared to GMG and healthy control group. The AUC for the three miRNAs between OMG and healthy control groups were 0.78, 0.79 and 0.79 respectively; the AUC between OMG and GMG was 0.84. CONCLUSIONS: The present study identified three novel miRNAs as candidate biomarkers for early-onset OMG patients and it was expected to provide a possibility and a new orientation for serum exosomal miRNAs as OMG diagnostic biomarkers.


Exosomes , MicroRNAs , Myasthenia Gravis , Adult , Humans , MicroRNAs/genetics , Exosomes/genetics , Myasthenia Gravis/diagnosis , Myasthenia Gravis/genetics , Biomarkers
19.
J Phys Chem B ; 128(1): 350-357, 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38151461

Casimir torque between parallel plates, a macroscopic quantum electrodynamics effect, is known to be induced by dielectric anisotropy and related to the rotational degree of freedom. We here reveal a different type of Casimir torque generated on a Au plate suspended in a quantum trap without recourse to materials anisotropy. As the Au plate deflects from the equilibrium plane with a nonzero flipping angle, the regions departing from and approaching the Teflon-coated Au substrate are subjected to attractive and repulsive Casimir forces, respectively, resulting in a restoring torque about the axis of flipping. For a quantum trap with an equilibrium separation of ∼10 nm, the stiffness per unit area of the Casimir flipping torque can be an order of magnitude larger than those of previously reported dielectric anisotropy-induced rotational torques at the same separation. The large Casimir flipping torque provides the possibility of designing a mechanical oscillator completely dominated by quantum and thermal fluctuations.

20.
Biomater Sci ; 12(2): 346-360, 2024 Jan 16.
Article En | MEDLINE | ID: mdl-38099814

Among all kinds of anticancer agents, small molecule drugs produce an unsatisfactory therapeutic effect due to the lack of selectivity, notorious drug resistance and side effects. Therefore, researchers have begun to pay extensive attention to macromolecular drugs with high efficacy and specificity. As a plant toxin, gelonin exerts potent antitumor activity via inhibiting intracellular protein synthesis. However, gelonin lacks a translocation domain, and thus its poor cellular uptake leads to low outcomes of antitumor response. Here, tumor acidity and matrix metalloproteinase (MMP) dual-responsive functional gelonin (Trx-PVGLIG-pHLIP-gelonin, TPpG), composed of a thioredoxin (Trx) tag, a pH low insertion peptide (pHLIP), an MMP-responsive motif PVGLIG hexapeptide and gelonin, was innovatively proposed and biologically synthesized by a gene recombination technique. TPpG exhibited good thermal and serum stability, showed MMP responsiveness and could enter tumor cells under weakly acidic conditions, especially for MMP2-overexpressing HT1080 cells. Compared to low MMP2-expressing MCF-7 cells, TPpG displayed enhanced in vitro antitumor efficacy to HT1080 cells at pH 6.5 as determined by different methods. Likewise, TPpG was much more effective in triggering cell apoptosis and inhibiting protein synthesis in HT1080 cells than in MCF-7 cells. Intriguingly, with enhanced stability and pH/MMP dual responsiveness, TPpG notably inhibited subcutaneous HT1080 xenograft growth in mice and no noticeable off-target side effect was observed. This ingeniously designed strategy aims at providing new perspectives for the development of a smart platform that can intelligently respond to a tumor microenvironment for efficient protein delivery.


Antineoplastic Agents , Neoplasms , Humans , Mice , Animals , Matrix Metalloproteinase 2 , Ribosome Inactivating Proteins, Type 1/chemistry , Ribosome Inactivating Proteins, Type 1/genetics , Ribosome Inactivating Proteins, Type 1/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , MCF-7 Cells , Neoplasms/drug therapy
...